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Abstract: This paper examines the parallel evolution of classical and quantum computing, emphasizing their shared 

foundations, complementary strengths, and the potential for both independent advancements and collaborative 

innovations. It explores the areas where each technology excels, focusing on mathematical principles, operational 

logic, gates, algorithms, and practical applications. A detailed comparison of hardware highlights the distinct 

strengths and limitations of classical and quantum systems, providing a clear perspective on their unique roles. The 

study underscores the pivotal role of classical computing as a foundation for quantum development, particularly 

through its application in simulating quantum circuits and advancing quantum algorithms. By analysing the 

interplay between these two paradigms, the paper sheds light on how they coexist and complement one another, 

shaping the trajectory of future computing advancements. Ultimately, it highlights their indispensable contributions 

to the innovation landscape, both as standalone technologies and as interconnected components in the broader 

computing ecosystem. 
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I.   INTRODUCTION 

The journey of computing has been remarkable, transitioning from theoretical ideas to transformative technologies. From 

the advent of classical computing in the 1930s to the emergence of quantum computing, these paradigms have evolved in 

parallel, shaping and enhancing each other in profound ways.This paper aims to explore this parallel evolution, highlighting 

their interconnected progress and the ways in which they drive each other forward. Classical computing was pioneered by 

visionaries such as Alan Turing and Alonzo Church, who introduced foundational concepts like the Turing Machine and 

Lambda Calculus, forming the bedrock of algorithmic theory [1],[2]. These developments paved the way for computational 

systems to transition from theoretical constructs to practical implementations. Simultaneously, the emergence of quantum 

mechanics revolutionized the understanding of physical systems, introducing principles such as superposition and 

entanglement. These concepts, initially explored by Einstein, Podolsky, and Rosen [3], later inspired the nascent field of 

quantum computing.  The mid-20th century witnessed milestones in classical computing, such as ENIAC and UNIVAC, 

which ushered in the era of electronic computing [4]. Simultaneously, physicists like Richard Feynman and David Deutsch 

laid the theoretical foundation for quantum computing. Deutsch introduced the concept of a universal quantum computer, 

capable of solving problems beyond the reach of classical systems. [5], [6]. This marked the beginning of two parallel but 

interconnected trajectories in the evolution of computing systems. Classical computing advanced through innovations such 

as mainframes, microprocessors, and programming languages like C and C++, catalysing widespread technological 

adoption [7]-[9]. In contrast, quantum computing matured gradually, achieving significant milestones with the introduction 

of qubits and algorithms such as Shor’s for factorization and Grover’s for database searching, showcasing the unique 

potential of quantum systems [10]-[12].In recent years, significant efforts have been devoted to the development of hybrid 

models that integrate classical and quantum approaches. Such architectures leverage the strengths of deterministic classical 
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systems and probabilistic quantum algorithms to solve complex problems, including those related to cryptography, 

optimization, and machine learning [13]-[17]. Researchers have also explored variational quantum algorithms and error 

mitigation techniques to enhance near-term quantum computing applications [18]-[21].Emerging paradigms, such as hybrid 

quantum-classical computing, promise to address challenges posed by the limitations of near-term quantum devices and 

enable new applications in industries ranging from chemistry to artificial intelligence [22]-[25]. The shift towards practical 

quantum computing underscores the growing synergy between classical and quantum systems, making the analysis of their 

coexistence and integration more relevant than ever. Аs computing progresses, key advancements in superconducting qubits 

and variational quantum algorithms are pushing the boundaries of quantum hardware and software capabilities [26]-[29]. 

Classical and quantum computing are not just advancements but complementary paradigms shaping the future of 

technology. Quantum computing relies on early hardware, software, and classical-based simulators to bridge the transition. 

Practical evidence shows quantum's importance in specific fields while classical computing remains vital for less demanding 

applications. This paper explores their coexistence, synergy, and evolution. 

II.   BRIDGING CLASSICAL AND QUANTUM COMPUTING: TECHNOLOGICAL 

PERSPECTIVES 

As mentioned earlier, classical computing technologies are essential in driving the development of quantum computing, 

providing the tools needed to simulate, test, and refine quantum systems.  

TABLE I. Classical Computing in Quantum Development: Pros and Cons 

Technology Origin (Classical 

Computing) 

Use in Quantum 

Computing 

Advantages Disadvantages 

Classical 

Programming 

Languages 

C, C++, Python, 

JavaScript 

Quantum computing 

frameworks and algorithms 

implementation. classical 

languages like Python (e.g., 

Qiskit, Cirq).. 

Easy integration with quantum 

libraries. 

Flexible for quantum 

algorithm development. 

 

Classical languages miss 

quantum-specific 

behaviour; 

Quantum operations 

need adaptation in 

classical languages. 

Cloud 

Computing 

Cloud platforms 

like AWS, Google 

Cloud, MS Azure,  

(IBM Quantum 

Experience Google 

Quantum AI) 

Quantum computers are 

accessible through cloud 

platforms enabling users to 

run algorithms on quantum 

simulators or real quantum 

hardware 

Struggles to scale for large 

quantum systems. 

May not fully capture quantum 

phenomena. 

 Dependency on internet 

connectivity; Latency 

issues with remote 

access.;  

Limited availability of 

quantum hardware. 

High-

Performance 

Computing 

(HPC) 

Supercomputers, 

parallel computing 

Simulating quantum circuits 

and quantum systems, which 

are essential for testing 

algorithms before running 

them on actual quantum 

hardware. 

Offers immense computational 

power. 

Simulates large quantum 

circuits.Detects errors before 

hardware use. 

 

Extremely expensive to 

maintain.; Limited 

ability to simulate large 

quantum systems due to 

the exponential growth 

of quantum states. 

Machine 

Learning 

Libraries 

TensorFlow, 

PyTorch, Scikit-

learn 

 

Quantum machine learning 

(QML) combines classical 

ML libraries to analyse 

quantum data, design hybrid 

algorithms, and optimize 

quantum models. 

Optimized for classical tasks, 

integrates with quantum 

libraries, and enables hybrid 

algorithms. 

 

Limits quantum 

advantages; 

Unsuitable for some 

QML problems. 

 

Docker & 

Virtualization 

Docker, VMware, 

VirtualBox 

Containers and virtualization 

simulate quantum 

environments, manage 

dependencies, and ensure 

reproducible quantum 

experiments. 

 

Simplifies setup, ensures 

consistency, and enables cross-

platform development. 

 

Performance overhead 

from virtualization. 

Limited by classical 

hardware for large 

quantum simulations. 

Classical 

Simulators 

Simulation 

software for 

classical systems 

(e.g MATLAB, 

NumPy) 

Classical simulators like 

Qiskit Aer and Cirq test and 

optimize quantum 

algorithms on classical 

hardware before real 

quantum deployment. 

 

Cost-effective; Enables rapid 

testing and debugging; 

Supports quantum error 

correction testing. 

Struggles to scale for 

large quantum systems; 

May not fully capture 

quantum phenomena. 
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Optimization 

Algorithms 

Classical 

optimization 

techniques (e.g., 

genetic algorithms, 

simulated 

annealing) 

Classical optimization 

algorithms are used in 

hybrid quantum-classical 

systems, with quantum 

processors handling 

operations and classical 

algorithms managing 

optimization. 

 

Well-established and highly 

efficient for many classical 

optimization problems; Can be 

adapted for hybrid quantum-

classical systems. 

Classical algorithms 

may not fully harness 

quantum potential; 

Optimizing for quantum 

systems can be 

computationally 

intensive. 

Data Storage 

& 

Management 

Relational 

databases, NoSQL, 

Data Lakest 

Classical data management 

tools store quantum results, 

manage large datasets, and 

ensure efficient processing 

of quantum states and 

measurements. 

 

Well-established tools for 

storing large datasets; Easy to 

integrate with quantum 

systems for result storage.- 

Robust and reliable. 

Classical storage 

systems may struggle 

with large quantum state 

spacesчData 

management for 

quantum properties is 

still evolving. 

 

Integrated 

Development 

Environments 

(IDEs) 

Visual Studio, 

Eclipse, IntelliJ 

IDEA 

Quantum development 

environments are integrated 

with IDEs to support writing 

and debugging quantum 

programs in classical 

environments. 

Familiar development 

environment;Integrated 

debugging and testing; Rich 

set of plugins and extensions 

for quantum programming. 

May not fully capture 

the unique aspects of 

quantum programming; 

Debugging quantum 

code may be more 

complex than classical 

code. 

Networking 

& Distributed 

Systems 

TCP/IP, 

WebSockets, 

RESTful APIs 

Classical networking 

protocols connect quantum 

computers to classical 

systems for remote access, 

communication, and 

coordination. 

 

Widely adopted and reliable; 

Ensures smooth 

communication between 

quantum and classical systems; 

Facilitates remote quantum 

access. 

Communication delays 

or latency can be an 

issue with remote 

quantum hardware; 

Limited bandwidth may 

affect the performance 

of hybrid quantum-

classical systems. 

They enable the design of quantum algorithms, the modelling of quantum circuits, and the testing of quantum hardware, 

acting as a bridge between theoretical ideas and real-world applications. Developing quantum hardware and algorithms is 

particularly challenging because quantum systems operate on principles like superposition, entanglement, and decoherence, 

which are fundamentally different from classical computation. Quantum hardware requires extreme precision and highly 

controlled environments, such as ultra-low temperatures, to keep qubits stable. At the same time, quantum algorithms need 

to embrace a completely new way of thinking about computation, moving beyond the straightforward processes of classical 

systems. These challenges make classical computing an invaluable partner, offering the precision, stability, and scalability 

needed to model quantum behaviour, test ideas, and refine solutions, paving the way for advancements in this transformative 

field. The TABLE I. highlights the classical computing technologies employed in the development and support of quantum 

computing. These include classical programming languages, cloud platforms, and high-performance computing, which play 

pivotal roles in algorithm development, simulation, and system integration. For instance, programming languages like 

Python are leveraged for quantum frameworks such as Qiskit and Cirq, enabling rapid prototyping of quantum algorithms 

[32], [33]. Cloud computing platforms, including IBM Quantum Experience and Google Quantum AI, provide accessible 

environments for executing quantum algorithms on simulators and real quantum hardware, supporting advancements in 

both software and hardware development [31], [32]. HPC systems allow for the simulation of complex quantum circuits, 

essential for testing and debugging before deployment on actual quantum hardware [35].Open-source tools like TensorFlow 

[37] Quantum and PennyLane are instrumental in bridging classical and quantum machine learning, fostering hybrid 

approaches that optimize quantum models [34], [38]. Networking frameworks such as QuNetSim also facilitate distributed 

quantum systems, ensuring seamless communication between classical and quantum components [37].Despite these 

advancements, classical technologies often face limitations when addressing quantum-specific challenges, such as 

superposition and entanglement [39]. This necessitates the development of specialized quantum-focused tools and solutions 

to fully leverage the unique capabilities of quantum computing [30], [36]. 
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III.   MATHEMATICAL FOUNDATIONS OF CLASSICAL AND QUANTUM PROGRAMMING 

The mathematical frameworks underlying classical and quantum programming provide distinct methods of representing, 

manipulating, and processing information. These foundations dictate how problems are approached, how operations are 

performed, and the computational power available within each paradigm. In essence, quantum programming builds upon 

familiar concepts from classical computing while introducing a radically new paradigm. It leverages the principles of 

quantum mechanics to solve problems that are beyond the efficient reach of classical systems, offering both challenges and 

opportunities for innovation. 

TABLE II. Similarities and Differences Between Classical and Quantum Programming 

Aspect Classical Programming Quantum Programming 

Information 

Representation 

Binary digits (0, 1). Logical and distinct 

states of bits 

Qubits in superposition, represented as a quantum state. 

Mathematical 

Framework 

Boolean Algebra governs logical operations 

on bits 

Linear Algebra governs quantum state manipulations and 

transformations in Hilbert spaces 

State Representation Finite sequences of binary states (e.g., 

1011) 

Quantum states as vectors in complex Hilbert spaces 

Computation Model Deterministic models based on sequential 

logic gates and transitions 

Unitary transformations applied to qubits; computations 

leverage quantum superposition and entanglement 

Operations Boolean logic gates (AND, OR, NOT, 

XOR) 

Quantum gates (e.g., Hadamard, Pauli-X, CNOT), 

represented as unitary matrices 

Parallelism Lacks inherent parallelism; operations are 

performed sequentially. 

Quantum parallelism: Superposition allows multiple 

computations simultaneously. 

Error Handling Classical error correction methods (e.g., 

parity checks, Hamming codes). 

Quantum error correction (e.g., Shor Code, surface codes) 

to address decoherence and gate errors. 

Measurement Binary output (0 or 1) with deterministic 

results. 

Collapses quantum state to one of the basis states with a 

probability proportional to the squared amplitude 

Entanglement Not applicable; classical bits are 

independent. 

Qubits can be entangled, enabling correlations that classical 

systems cannot replicate. 

Complexity Governed by classical computational 

complexity (e.g., P vs. NP problems) 

Governed by quantum complexity classes (e.g., BQP), 

enabling exponential speedup for certain problems 

The TABLE II. highlights the classical computing technologies employed in the development and support of quantum 

computing. These include classical programming languages, cloud platforms, and high-performance computing (HPC), 

which play pivotal roles in algorithm development, simulation, and system integration. For instance, programming 

languages like Python are leveraged for quantum frameworks such as Qiskit and Cirq, enabling rapid prototyping of 

quantum algorithms [5], [15]. The data presented in TABLE II. can be analysed and discussed within the following contexts: 

A. Information Representation 

In classical programming, information is represented using binary digits (bits), each of which exists in one of two distinct 

states: 00 or 11 [29]. Logical operations on these bits form the basis of computation, enabling deterministic and predictable 

processing. In contrast, quantum programming represents information using qubits, which can exist in a superposition of 

two basic states. A qubit is mathematically represented as a superposition of two basis states, ∣0⟩ and ∣1⟩|, in the form 

∣ψ⟩=α∣0⟩+β∣1⟩  where α and β are complex amplitudes satisfying |𝛼|2 +  |𝛽|2 = 1 . This allows quantum systems to encode 

multiple possibilities simultaneously, leveraging quantum parallelism [14], [15]. 

B. Mathematical framework 

Classical programming is built upon Boolean algebra, which governs operations like AND, OR, and NOT [29]. These 

logical gates manipulate binary inputs and are modelled by truth tables. Computation in classical systems is deterministic, 

following predefined rules that ensure a specific output for given inputs. In quantum programming, the foundation lies in 

linear algebra. Quantum states are represented as vectors in complex Hilbert spaces, and transformations are applied using 

unitary matrices that preserve the probabilistic nature of the system [15]. For instance, quantum gates like the Hadamard 

gate create superposition, while the CNOT gate introduces entanglement between qubits [14]. 
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C. State Representation  

In classical programming, states are defined by finite binary sequences [29]. These states evolve deterministically as 

operations are applied, and their transitions are modelled using finite automata or Turing machines [39]. Quantum states, 

however, are described as vectors in a Hilbert space. These states can represent complex relationships between qubits, such 

as entanglement, where the state of one qubit is dependent on another, regardless of physical distance [15]. This 

phenomenon allows quantum computers to solve problems that are infeasible for classical systems. 

D. Computation model 

The computation model in classical programming follows sequential logic, where operations are performed in a step-by-

step manner. Classical programs are executed on deterministic hardware that processes instructions in a linear fashion [29]. 

Error handling in such systems is managed using classical error correction methods, such as parity checks and Hamming 

codes, which detect and correct bit-level errors [41].Quantum computation uses unitary transformations to manipulate 

qubits. These transformations are reversible and operate on the probabilistic states of qubits, leveraging quantum 

phenomena like superposition and entanglement [15]. Quantum error correction is far more complex, addressing issues like 

decoherence and gate imperfections. Techniques like the Shor Code and surface codes are employed to protect quantum 

information [14]. 

E. Operations 

Classical operations are based on deterministic logic gates (e.g., AND, OR, XOR), which manipulate binary inputs to 

produce a specific output [29]. These operations form the foundation of classical algorithms, ranging from simple arithmetic 

to complex cryptographic protocols. In quantum programming, operations are modelled using quantum gates, which are 

fundamentally different from their classical counterparts. Quantum gates, such as Pauli-X, Hadamard, and CNOT, are 

represented as unitary matrices and enable the manipulation of qubits in a reversible manner [15]. These gates can create 

complex quantum states that are utilized in algorithms like Shor’s Algorithm for factorization and Grover’s Algorithm for 

database search [5], [14]  and in many other algorithms such as algebraic, number theory, approximations, oracular and 

BQM-complete problems [40] 

F. Measurement and Complexity 

As previously said, classical systems produce deterministic outputs; for example, measuring a bit always yields either 00 

or 11. In quantum systems, measurement collapses a quantum state into one of its basis states (e.g., ∣0⟩ or ∣1⟩, with 

probabilities determined by the amplitudes of the state prior to measurement [14],[15].The computational complexity of 

classical systems is categorized into classes like P, NP, and NP-complete, which define the feasibility of solving certain 

problems [39]. Quantum systems, however, introduce new complexity classes, such as BQP (Bounded Quantum Polynomial 

Time), which includes problems solvable efficiently using quantum algorithms [5]. 

IV.   OVERVIEW OF QUANTUM COMPUTING SIMULATORS AND THEIR UNDERLYING 

TECHNOLOGIES 

Quantum computing simulators are essential tools for testing and developing quantum algorithms in classical environments. 

These simulators model the behaviour of quantum systems using classical computing resources, allowing researchers and 

developers to experiment with quantum algorithms without the need for a real quantum computer. Below on TABLE III. 

an overview of some widely used quantum computing simulators is presented, along with the technologies on which they 

are based. 

TABLE III.  Quantum Simulators and Technologies behind 

Simulator Description Underlying Technology 

IBM Qiskit Aer A high-performance quantum computing simulator for 

quantum circuits. Supports ideal and noisy simulations. 

Built on Python libraries with C++ ITensor for 

tensor network simulations. 

Cirq Simulator Used for simulating quantum circuits for near-term 

devices. 

Python-based with NumPy optimization. 

ProjectQ Open-source framework for implementing quantum 

programs on simulators or real devices. 

Python for high-level coding and C++ for 

performance optimization. 
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Microsoft  

Quantum Simulator 

Simulates quantum algorithms written in Q#. Supports 

large-scale quantum circuits. 

Built on .NET, uses vectorized algorithms, and 

leverages GPU acceleration. 

QuTiP Focused on simulating quantum dynamics and 

information processing. 

Written in Python with SciPy and advanced 

numerical methods. 

PyQuil (Forest) Part of Rigetti’s Forest platform for programming and 

simulating quantum circuits. 

Python-based with classical computational 

methods. 

QSim A Google quantum circuit simulator for classical 

systems with high performance. 

TensorFlow-based with optimizations for 

multi-core CPUs and GPUs. 

Quantum 

Development Kit 

Part of Microsoft QDK, simulates quantum programs 

developed with Q#. 

Based on .NET libraries with classical 

algorithms for simulation optimization. 

Tket A development platform with simulators for quantum 

circuits. 

Python-based with compiler optimizations like 

gate decomposition. 

Quantum 

Computing 

Playground 

Web-based interactive quantum simulator developed by 

Google, allowing users to simulate quantum circuits 

without any setup 

Uses TensorFlow for backend computation and 

JavaScript for interaction. 

Qmod A quantum simulator designed for modular simulations 

of quantum networks and hybrid systems. 

Python-based with modular components and 

classical algorithms for simulating quantum 

networks. 

Classiq Simplifies quantum circuit design for complex use cases, 

often used alongside simulators like Qmod. 

Uses algorithmic synthesis to generate circuits, 

leveraging classical computing methods for 

layout optimization. 

Below is a brief description of each of these simulators, in the context of their application and the technologies on which it 

is based. 

A. IBM Qiskit Aer 

IBM Qiskit Aer is a robust simulator for both ideal and noisy quantum circuit simulations. It leverages Python and the 

ITensor C++ library to deliver high-performance quantum state manipulations. This makes it suitable for researchers 

developing and testing quantum algorithms. Additionally, Qiskit Aer allows integration with quantum hardware through 

Qiskit Terra, enabling seamless transition from simulation to real quantum computation. It also supports advanced features 

like noise modeling and pulse-level control, making it versatile for studying quantum error correction and quantum device 

performance.[42]. 

B. ProjectQ 

ProjectQ is an open-source quantum programming framework that supports simulation and execution on quantum hardware. 

It combines Python for user-level coding with C++ for backend performance, offering flexibility and efficiency in quantum 

algorithm development. The framework includes tools for circuit optimization, automatic decomposition of high-level gates, 

and compatibility with multiple quantum hardware platforms, making it a versatile tool for both academic and industrial 

applications.[43] 

C. Microsoft Quantum Simulator 

Microsoft’s Quantum Simulator (MQS) is a part of the Quantum Development Kit, designed for large-scale quantum 

circuits. It supports Q#, uses vectorized algorithms, and integrates GPU acceleration, making it ideal for scalable quantum 

computations. MQS includes debugging tools like resource estimators and supports integration with Azure Quantum for 

cloud-based quantum computing services, enhancing accessibility and scalability[44]. 

D. Quantum Toolbox in Python 

The Quantum Toolbox in Python (QuTiP) is widely used for simulating quantum dynamics and information processing. It 

employs numerical methods, including matrix exponentiation, for efficient quantum simulations, supporting advanced 

research in quantum systems. QuTiP also provides modules for solving Lindblad master equations, quantum optics 

simulations, and visualization of quantum states, making it a comprehensive tool for exploring quantum phenomena.[45] 
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E. PyQuil Forest 

PyQuil, part of Rigetti’s Forest platform, allows quantum programming and simulation using the Quil language. It is 

designed for seamless integration with Rigetti’s quantum hardware, offering a comprehensive workflow for developing and 

testing quantum algorithms. PyQuil supports hybrid quantum-classical computation and provides tools for quantum circuit 

optimization, enabling users to efficiently simulate and experiment with complex quantum systems [46]. 

F. QSim 

QSim by Google is a high-performance quantum circuit simulator optimized for classical systems. It leverages TensorFlow 

for scaling and multi-core GPU/CPU optimization, enabling fast and efficient simulations of quantum states. QSim’s 

architecture is designed for extensibility, allowing researchers to customize simulation parameters and integrate with other 

quantum software tools for enhanced functionality.[47] 

G. Quantum Development Kit QDK 

Microsoft’s Quantum Development Kit includes a simulator for testing quantum algorithms written in Q#. It provides robust 

support for developing quantum applications, using .NET libraries for optimization and scalability. The QDK also includes 

libraries for quantum chemistry, machine learning, and numerical optimization, making it a versatile platform for exploring 

diverse quantum applications [48] 

H. Tket 

Tket, developed by Cambridge Quantum, is a quantum software platform that provides simulators for running quantum 

circuits. It uses classical optimization methods like gate decomposition to enhance quantum circuit execution. Tket also 

supports multi-platform compatibility, enabling users to develop and test circuits on various quantum hardware backends 

and simulators, ensuring broad applicability [49]. 

I. Quantum Computing Playground 

Quantum Computing Playground is a browser-based interactive simulator. Developed by Google, it offers a beginner-

friendly environment for experimenting with quantum circuits without the need for additional setup. The platform includes 

features like real-time visualization of quantum states, debugging tools, and an intuitive drag-and-drop interface, making it 

accessible for users new to quantum computing [50]. 

J. Cirq Simulator 

Cirq is an open-source quantum computing framework developed by Google, primarily designed for simulating and running 

quantum circuits on quantum processors. It is particularly focused on providing tools for creating, simulating, and executing 

quantum algorithms on near-term quantum hardware. The framework is tailored for optimizing quantum circuits and 

supporting quantum hardware from various providers [51]. 

K. Qmod 

Qmod specializes in modular quantum simulation, allowing researchers to simulate complex quantum networks and hybrid 

systems. Its modular approach makes it flexible for modeling quantum interactions. Qmod also supports parameterized 

quantum gates and customizable simulation environments, enabling researchers to tailor simulations to specific 

experimental setups [52]. 

J. ClassiQ 

Classiq is a quantum algorithm design platform, not a simulator. It automates the synthesis of quantum circuits, simplifying 

the design of complex algorithms. Classiq is often used alongside simulators like Qmod to validate and test generated 

circuits. The platform also provides an intuitive graphical interface and supports integration with major quantum hardware 

providers, enhancing its usability for quantum algorithm development [53]. 

Quantum simulators work based on principles that aim to mimic the behavior of quantum systems, enabling researchers to 

create circuits using quantum gates, study quantum algorithms and phenomena without directly using a quantum computer. 

These simulators leverage classical computing resources to approximate the outcomes of quantum operations, such as 
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superposition and entanglement, which are fundamental to quantum mechanics. Common approaches include state-vector 

simulations, density matrix methods, and hybrid simulations that combine classical and quantum computing techniques. 

They are essential tools for testing and optimizing quantum algorithms before running them on actual quantum hardware, 

which is still limited in terms of scalability and coherence. Fig. 1 [54] illustrates the overall workflow involved in the 

operation of quantum simulators. 

Fig.1. Abstract work flow of a single experiment  session. 

The client-side interface, built with HTML, CSS, and JavaScript, is designed to assist users and prevent logical errors. 

Redundant qubits and empty columns are automatically removed to simplify circuits and enhance clarity. Errors arising 

from quantum theory contradictions, such as applying Hadamard gates to collapsed qubits, are detected and promptly 

reported with explanatory messages. Critical operations are blocked until the issues are resolved [54]. The performance of 

each simulator varies individually, but the underlying principles remain consistent. As mentioned earlier, the objective is to 

facilitate the active development of quantum technologies and algorithms while quantum hardware continues to evolve. An 

experiment in quantum computing involves designing and testing a quantum circuit and gates to solve a specific problem. 

The process begins with defining the quantum circuit, which consists of qubits and gate operations. Then, a suitable quantum 

algorithm is selected based on the problem at hand, such as quantum optimization or machine learning tasks. After 

implementing the circuit, tests are conducted to evaluate its accuracy and performance. The results are compared with 

classical methods to assess the potential advantages or limitations of the quantum solution. 

V.   CONCLUSION 

The integration of classical and quantum computing is set to transform industries by addressing challenges beyond the reach 

of traditional systems. Classical computing will continue to excel in managing tasks requiring precision, large-scale data 

handling, and system control. Meanwhile, quantum computing offers groundbreaking capabilities in optimization, 

cryptography, molecular simulation, and material science. Hybrid computing frameworks, where classical and quantum 

systems collaborate, are emerging as a powerful paradigm. Classical computing can handle data preprocessing and system 

orchestration, while quantum systems tackle computationally intensive algorithms, such as those used in optimization or 

cryptographic analysis. This synergy is particularly promising for accelerating artificial intelligence tasks, such as feature 
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selection and pattern recognition.Future advancements will hinge on solving key challenges, including quantum error 

correction, improving qubit coherence, and scaling quantum hardware. Industry leaders such as IBM and Microsoft are 

driving advancements in quantum computing with roadmaps focused on scaling systems and achieving fault tolerance. IBM 

prioritizes scalability for complex computations, while Microsoft emphasizes fault-tolerant systems to enhance reliability 

[55], [56]. Additionally, companies like Rigetti and D-Wave are advancing hybrid solutions for applications in logistics, 

scheduling, and drug discovery [57], [58]. Government initiatives also play a vital role. For instance, the U.S. National 

Quantum Coordination Office emphasizes the strategic importance of quantum networks for secure communications and 

innovation [59]. Enterprises like Accenture are preparing businesses for the integration of quantum computing into their 

operations, highlighting its transformative potential [60]. The EU’s Digital Decade strategy aims to have its first 

supercomputer with quantum acceleration by 2025, positioning Europe as a global leader in quantum capabilities by 2030. 

The European Chips Act supports the cost-effective, high-volume production of quantum chips in the EU for innovative 

quantum devices. EU Member States have committed to developing a world-class quantum technology ecosystem, 

recognizing its strategic importance for scientific and industrial competitiveness, with the goal of making Europe the global 

leader in quantum excellence and innovation [61], [62]. Countries such as South Korea, India, Japan and Russia are also 

advancing quantum computing with national strategies and ambitious goals.South Korea's Ministry of Science and ICT has 

set plans to develop fault-tolerant quantum systems and train a skilled quantum workforce by 2030 [63] . India launched 

the National Quantum Mission (NQM) to develop indigenous quantum technologies, including secure quantum 

communication networks and scalable quantum processors [64]. Japan's Moonshot Research and Development Program 

prioritizes quantum technology to address societal challenges, including secure communications and advanced simulations 

[65].  According to Moscow State University, Russia plans to advance its capabilities in quantum technologies through 

projects focused on developing quantum computing systems, quantum communication networks, and quantum sensors, 

aiming to strengthen industrial applications and scientific research [66].  According to QURECA, quantum initiatives 

worldwide, including efforts in many other countries, are driving innovation and collaboration to advance quantum 

technologies across various sectors [67].These global initiatives highlight the shared recognition of quantum computing's 

transformative potential and underscore the need for international collaboration and competitive innovation. The future of 

computing lies in the complementarity and coexistence of classical and quantum technologies, fostering innovations across 

multiple sectors. 
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