
 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 53
Paper Publications

Quantum v.s. Classical Computing:

Technologies in Tandem

Ramona Markoska1, Aleksandar Markoski1

1Faculty of ICT, UKLO, N.Macedonia

1Faculty of ICT, UKLO, N.Macedonia

DOI: https://doi.org/0.5281/zenodo.14717542

Published Date: 22-January-2025

Abstract: This paper examines the parallel evolution of classical and quantum computing, emphasizing their shared

foundations, complementary strengths, and the potential for both independent advancements and collaborative

innovations. It explores the areas where each technology excels, focusing on mathematical principles, operational

logic, gates, algorithms, and practical applications. A detailed comparison of hardware highlights the distinct

strengths and limitations of classical and quantum systems, providing a clear perspective on their unique roles. The

study underscores the pivotal role of classical computing as a foundation for quantum development, particularly

through its application in simulating quantum circuits and advancing quantum algorithms. By analysing the

interplay between these two paradigms, the paper sheds light on how they coexist and complement one another,

shaping the trajectory of future computing advancements. Ultimately, it highlights their indispensable contributions

to the innovation landscape, both as standalone technologies and as interconnected components in the broader

computing ecosystem.

Keywords: Quantum Computing, Programming, Underling Technologies, Mathematical Foundations, Simulators.

I. INTRODUCTION

The journey of computing has been remarkable, transitioning from theoretical ideas to transformative technologies. From

the advent of classical computing in the 1930s to the emergence of quantum computing, these paradigms have evolved in

parallel, shaping and enhancing each other in profound ways.This paper aims to explore this parallel evolution, highlighting

their interconnected progress and the ways in which they drive each other forward. Classical computing was pioneered by

visionaries such as Alan Turing and Alonzo Church, who introduced foundational concepts like the Turing Machine and

Lambda Calculus, forming the bedrock of algorithmic theory [1],[2]. These developments paved the way for computational

systems to transition from theoretical constructs to practical implementations. Simultaneously, the emergence of quantum

mechanics revolutionized the understanding of physical systems, introducing principles such as superposition and

entanglement. These concepts, initially explored by Einstein, Podolsky, and Rosen [3], later inspired the nascent field of

quantum computing. The mid-20th century witnessed milestones in classical computing, such as ENIAC and UNIVAC,

which ushered in the era of electronic computing [4]. Simultaneously, physicists like Richard Feynman and David Deutsch

laid the theoretical foundation for quantum computing. Deutsch introduced the concept of a universal quantum computer,

capable of solving problems beyond the reach of classical systems. [5], [6]. This marked the beginning of two parallel but

interconnected trajectories in the evolution of computing systems. Classical computing advanced through innovations such

as mainframes, microprocessors, and programming languages like C and C++, catalysing widespread technological

adoption [7]-[9]. In contrast, quantum computing matured gradually, achieving significant milestones with the introduction

of qubits and algorithms such as Shor’s for factorization and Grover’s for database searching, showcasing the unique

potential of quantum systems [10]-[12].In recent years, significant efforts have been devoted to the development of hybrid

models that integrate classical and quantum approaches. Such architectures leverage the strengths of deterministic classical

https://www.paperpublications.org/
https://www.paperpublications.org/
https://doi.org/0.5281/zenodo.14717542

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 54
Paper Publications

systems and probabilistic quantum algorithms to solve complex problems, including those related to cryptography,

optimization, and machine learning [13]-[17]. Researchers have also explored variational quantum algorithms and error

mitigation techniques to enhance near-term quantum computing applications [18]-[21].Emerging paradigms, such as hybrid

quantum-classical computing, promise to address challenges posed by the limitations of near-term quantum devices and

enable new applications in industries ranging from chemistry to artificial intelligence [22]-[25]. The shift towards practical

quantum computing underscores the growing synergy between classical and quantum systems, making the analysis of their

coexistence and integration more relevant than ever. Аs computing progresses, key advancements in superconducting qubits

and variational quantum algorithms are pushing the boundaries of quantum hardware and software capabilities [26]-[29].

Classical and quantum computing are not just advancements but complementary paradigms shaping the future of

technology. Quantum computing relies on early hardware, software, and classical-based simulators to bridge the transition.

Practical evidence shows quantum's importance in specific fields while classical computing remains vital for less demanding

applications. This paper explores their coexistence, synergy, and evolution.

II. BRIDGING CLASSICAL AND QUANTUM COMPUTING: TECHNOLOGICAL

PERSPECTIVES

As mentioned earlier, classical computing technologies are essential in driving the development of quantum computing,

providing the tools needed to simulate, test, and refine quantum systems.

TABLE I. Classical Computing in Quantum Development: Pros and Cons

Technology Origin (Classical

Computing)

Use in Quantum

Computing

Advantages Disadvantages

Classical

Programming

Languages

C, C++, Python,

JavaScript

Quantum computing

frameworks and algorithms

implementation. classical

languages like Python (e.g.,

Qiskit, Cirq)..

Easy integration with quantum

libraries.

Flexible for quantum

algorithm development.

Classical languages miss

quantum-specific

behaviour;

Quantum operations

need adaptation in

classical languages.

Cloud

Computing

Cloud platforms

like AWS, Google

Cloud, MS Azure,

(IBM Quantum

Experience Google

Quantum AI)

Quantum computers are

accessible through cloud

platforms enabling users to

run algorithms on quantum

simulators or real quantum

hardware

Struggles to scale for large

quantum systems.

May not fully capture quantum

phenomena.

 Dependency on internet

connectivity; Latency

issues with remote

access.;

Limited availability of

quantum hardware.

High-

Performance

Computing

(HPC)

Supercomputers,

parallel computing

Simulating quantum circuits

and quantum systems, which

are essential for testing

algorithms before running

them on actual quantum

hardware.

Offers immense computational

power.

Simulates large quantum

circuits.Detects errors before

hardware use.

Extremely expensive to

maintain.; Limited

ability to simulate large

quantum systems due to

the exponential growth

of quantum states.

Machine

Learning

Libraries

TensorFlow,

PyTorch, Scikit-

learn

Quantum machine learning

(QML) combines classical

ML libraries to analyse

quantum data, design hybrid

algorithms, and optimize

quantum models.

Optimized for classical tasks,

integrates with quantum

libraries, and enables hybrid

algorithms.

Limits quantum

advantages;

Unsuitable for some

QML problems.

Docker &

Virtualization

Docker, VMware,

VirtualBox

Containers and virtualization

simulate quantum

environments, manage

dependencies, and ensure

reproducible quantum

experiments.

Simplifies setup, ensures

consistency, and enables cross-

platform development.

Performance overhead

from virtualization.

Limited by classical

hardware for large

quantum simulations.

Classical

Simulators

Simulation

software for

classical systems

(e.g MATLAB,

NumPy)

Classical simulators like

Qiskit Aer and Cirq test and

optimize quantum

algorithms on classical

hardware before real

quantum deployment.

Cost-effective; Enables rapid

testing and debugging;

Supports quantum error

correction testing.

Struggles to scale for

large quantum systems;

May not fully capture

quantum phenomena.

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 55
Paper Publications

Optimization

Algorithms

Classical

optimization

techniques (e.g.,

genetic algorithms,

simulated

annealing)

Classical optimization

algorithms are used in

hybrid quantum-classical

systems, with quantum

processors handling

operations and classical

algorithms managing

optimization.

Well-established and highly

efficient for many classical

optimization problems; Can be

adapted for hybrid quantum-

classical systems.

Classical algorithms

may not fully harness

quantum potential;

Optimizing for quantum

systems can be

computationally

intensive.

Data Storage

&

Management

Relational

databases, NoSQL,

Data Lakest

Classical data management

tools store quantum results,

manage large datasets, and

ensure efficient processing

of quantum states and

measurements.

Well-established tools for

storing large datasets; Easy to

integrate with quantum

systems for result storage.-

Robust and reliable.

Classical storage

systems may struggle

with large quantum state

spacesчData

management for

quantum properties is

still evolving.

Integrated

Development

Environments

(IDEs)

Visual Studio,

Eclipse, IntelliJ

IDEA

Quantum development

environments are integrated

with IDEs to support writing

and debugging quantum

programs in classical

environments.

Familiar development

environment;Integrated

debugging and testing; Rich

set of plugins and extensions

for quantum programming.

May not fully capture

the unique aspects of

quantum programming;

Debugging quantum

code may be more

complex than classical

code.

Networking

& Distributed

Systems

TCP/IP,

WebSockets,

RESTful APIs

Classical networking

protocols connect quantum

computers to classical

systems for remote access,

communication, and

coordination.

Widely adopted and reliable;

Ensures smooth

communication between

quantum and classical systems;

Facilitates remote quantum

access.

Communication delays

or latency can be an

issue with remote

quantum hardware;

Limited bandwidth may

affect the performance

of hybrid quantum-

classical systems.

They enable the design of quantum algorithms, the modelling of quantum circuits, and the testing of quantum hardware,

acting as a bridge between theoretical ideas and real-world applications. Developing quantum hardware and algorithms is

particularly challenging because quantum systems operate on principles like superposition, entanglement, and decoherence,

which are fundamentally different from classical computation. Quantum hardware requires extreme precision and highly

controlled environments, such as ultra-low temperatures, to keep qubits stable. At the same time, quantum algorithms need

to embrace a completely new way of thinking about computation, moving beyond the straightforward processes of classical

systems. These challenges make classical computing an invaluable partner, offering the precision, stability, and scalability

needed to model quantum behaviour, test ideas, and refine solutions, paving the way for advancements in this transformative

field. The TABLE I. highlights the classical computing technologies employed in the development and support of quantum

computing. These include classical programming languages, cloud platforms, and high-performance computing, which play

pivotal roles in algorithm development, simulation, and system integration. For instance, programming languages like

Python are leveraged for quantum frameworks such as Qiskit and Cirq, enabling rapid prototyping of quantum algorithms

[32], [33]. Cloud computing platforms, including IBM Quantum Experience and Google Quantum AI, provide accessible

environments for executing quantum algorithms on simulators and real quantum hardware, supporting advancements in

both software and hardware development [31], [32]. HPC systems allow for the simulation of complex quantum circuits,

essential for testing and debugging before deployment on actual quantum hardware [35].Open-source tools like TensorFlow

[37] Quantum and PennyLane are instrumental in bridging classical and quantum machine learning, fostering hybrid

approaches that optimize quantum models [34], [38]. Networking frameworks such as QuNetSim also facilitate distributed

quantum systems, ensuring seamless communication between classical and quantum components [37].Despite these

advancements, classical technologies often face limitations when addressing quantum-specific challenges, such as

superposition and entanglement [39]. This necessitates the development of specialized quantum-focused tools and solutions

to fully leverage the unique capabilities of quantum computing [30], [36].

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 56
Paper Publications

III. MATHEMATICAL FOUNDATIONS OF CLASSICAL AND QUANTUM PROGRAMMING

The mathematical frameworks underlying classical and quantum programming provide distinct methods of representing,

manipulating, and processing information. These foundations dictate how problems are approached, how operations are

performed, and the computational power available within each paradigm. In essence, quantum programming builds upon

familiar concepts from classical computing while introducing a radically new paradigm. It leverages the principles of

quantum mechanics to solve problems that are beyond the efficient reach of classical systems, offering both challenges and

opportunities for innovation.

TABLE II. Similarities and Differences Between Classical and Quantum Programming

Aspect Classical Programming Quantum Programming

Information

Representation

Binary digits (0, 1). Logical and distinct

states of bits

Qubits in superposition, represented as a quantum state.

Mathematical

Framework

Boolean Algebra governs logical operations

on bits

Linear Algebra governs quantum state manipulations and

transformations in Hilbert spaces

State Representation Finite sequences of binary states (e.g.,

1011)

Quantum states as vectors in complex Hilbert spaces

Computation Model Deterministic models based on sequential

logic gates and transitions

Unitary transformations applied to qubits; computations

leverage quantum superposition and entanglement

Operations Boolean logic gates (AND, OR, NOT,

XOR)

Quantum gates (e.g., Hadamard, Pauli-X, CNOT),

represented as unitary matrices

Parallelism Lacks inherent parallelism; operations are

performed sequentially.

Quantum parallelism: Superposition allows multiple

computations simultaneously.

Error Handling Classical error correction methods (e.g.,

parity checks, Hamming codes).

Quantum error correction (e.g., Shor Code, surface codes)

to address decoherence and gate errors.

Measurement Binary output (0 or 1) with deterministic

results.

Collapses quantum state to one of the basis states with a

probability proportional to the squared amplitude

Entanglement Not applicable; classical bits are

independent.

Qubits can be entangled, enabling correlations that classical

systems cannot replicate.

Complexity Governed by classical computational

complexity (e.g., P vs. NP problems)

Governed by quantum complexity classes (e.g., BQP),

enabling exponential speedup for certain problems

The TABLE II. highlights the classical computing technologies employed in the development and support of quantum

computing. These include classical programming languages, cloud platforms, and high-performance computing (HPC),

which play pivotal roles in algorithm development, simulation, and system integration. For instance, programming

languages like Python are leveraged for quantum frameworks such as Qiskit and Cirq, enabling rapid prototyping of

quantum algorithms [5], [15]. The data presented in TABLE II. can be analysed and discussed within the following contexts:

A. Information Representation

In classical programming, information is represented using binary digits (bits), each of which exists in one of two distinct

states: 00 or 11 [29]. Logical operations on these bits form the basis of computation, enabling deterministic and predictable

processing. In contrast, quantum programming represents information using qubits, which can exist in a superposition of

two basic states. A qubit is mathematically represented as a superposition of two basis states, ∣0⟩ and ∣1⟩|, in the form

∣ψ⟩=α∣0⟩+β∣1⟩ where α and β are complex amplitudes satisfying |𝛼|2 + |𝛽|2 = 1 . This allows quantum systems to encode

multiple possibilities simultaneously, leveraging quantum parallelism [14], [15].

B. Mathematical framework

Classical programming is built upon Boolean algebra, which governs operations like AND, OR, and NOT [29]. These

logical gates manipulate binary inputs and are modelled by truth tables. Computation in classical systems is deterministic,

following predefined rules that ensure a specific output for given inputs. In quantum programming, the foundation lies in

linear algebra. Quantum states are represented as vectors in complex Hilbert spaces, and transformations are applied using

unitary matrices that preserve the probabilistic nature of the system [15]. For instance, quantum gates like the Hadamard

gate create superposition, while the CNOT gate introduces entanglement between qubits [14].

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 57
Paper Publications

C. State Representation

In classical programming, states are defined by finite binary sequences [29]. These states evolve deterministically as

operations are applied, and their transitions are modelled using finite automata or Turing machines [39]. Quantum states,

however, are described as vectors in a Hilbert space. These states can represent complex relationships between qubits, such

as entanglement, where the state of one qubit is dependent on another, regardless of physical distance [15]. This

phenomenon allows quantum computers to solve problems that are infeasible for classical systems.

D. Computation model

The computation model in classical programming follows sequential logic, where operations are performed in a step-by-

step manner. Classical programs are executed on deterministic hardware that processes instructions in a linear fashion [29].

Error handling in such systems is managed using classical error correction methods, such as parity checks and Hamming

codes, which detect and correct bit-level errors [41].Quantum computation uses unitary transformations to manipulate

qubits. These transformations are reversible and operate on the probabilistic states of qubits, leveraging quantum

phenomena like superposition and entanglement [15]. Quantum error correction is far more complex, addressing issues like

decoherence and gate imperfections. Techniques like the Shor Code and surface codes are employed to protect quantum

information [14].

E. Operations

Classical operations are based on deterministic logic gates (e.g., AND, OR, XOR), which manipulate binary inputs to

produce a specific output [29]. These operations form the foundation of classical algorithms, ranging from simple arithmetic

to complex cryptographic protocols. In quantum programming, operations are modelled using quantum gates, which are

fundamentally different from their classical counterparts. Quantum gates, such as Pauli-X, Hadamard, and CNOT, are

represented as unitary matrices and enable the manipulation of qubits in a reversible manner [15]. These gates can create

complex quantum states that are utilized in algorithms like Shor’s Algorithm for factorization and Grover’s Algorithm for

database search [5], [14] and in many other algorithms such as algebraic, number theory, approximations, oracular and

BQM-complete problems [40]

F. Measurement and Complexity

As previously said, classical systems produce deterministic outputs; for example, measuring a bit always yields either 00

or 11. In quantum systems, measurement collapses a quantum state into one of its basis states (e.g., ∣0⟩ or ∣1⟩, with

probabilities determined by the amplitudes of the state prior to measurement [14],[15].The computational complexity of

classical systems is categorized into classes like P, NP, and NP-complete, which define the feasibility of solving certain

problems [39]. Quantum systems, however, introduce new complexity classes, such as BQP (Bounded Quantum Polynomial

Time), which includes problems solvable efficiently using quantum algorithms [5].

IV. OVERVIEW OF QUANTUM COMPUTING SIMULATORS AND THEIR UNDERLYING

TECHNOLOGIES

Quantum computing simulators are essential tools for testing and developing quantum algorithms in classical environments.

These simulators model the behaviour of quantum systems using classical computing resources, allowing researchers and

developers to experiment with quantum algorithms without the need for a real quantum computer. Below on TABLE III.

an overview of some widely used quantum computing simulators is presented, along with the technologies on which they

are based.

TABLE III. Quantum Simulators and Technologies behind

Simulator Description Underlying Technology

IBM Qiskit Aer A high-performance quantum computing simulator for

quantum circuits. Supports ideal and noisy simulations.

Built on Python libraries with C++ ITensor for

tensor network simulations.

Cirq Simulator Used for simulating quantum circuits for near-term

devices.

Python-based with NumPy optimization.

ProjectQ Open-source framework for implementing quantum

programs on simulators or real devices.

Python for high-level coding and C++ for

performance optimization.

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 58
Paper Publications

Microsoft

Quantum Simulator

Simulates quantum algorithms written in Q#. Supports

large-scale quantum circuits.

Built on .NET, uses vectorized algorithms, and

leverages GPU acceleration.

QuTiP Focused on simulating quantum dynamics and

information processing.

Written in Python with SciPy and advanced

numerical methods.

PyQuil (Forest) Part of Rigetti’s Forest platform for programming and

simulating quantum circuits.

Python-based with classical computational

methods.

QSim A Google quantum circuit simulator for classical

systems with high performance.

TensorFlow-based with optimizations for

multi-core CPUs and GPUs.

Quantum

Development Kit

Part of Microsoft QDK, simulates quantum programs

developed with Q#.

Based on .NET libraries with classical

algorithms for simulation optimization.

Tket A development platform with simulators for quantum

circuits.

Python-based with compiler optimizations like

gate decomposition.

Quantum

Computing

Playground

Web-based interactive quantum simulator developed by

Google, allowing users to simulate quantum circuits

without any setup

Uses TensorFlow for backend computation and

JavaScript for interaction.

Qmod A quantum simulator designed for modular simulations

of quantum networks and hybrid systems.

Python-based with modular components and

classical algorithms for simulating quantum

networks.

Classiq Simplifies quantum circuit design for complex use cases,

often used alongside simulators like Qmod.

Uses algorithmic synthesis to generate circuits,

leveraging classical computing methods for

layout optimization.

Below is a brief description of each of these simulators, in the context of their application and the technologies on which it

is based.

A. IBM Qiskit Aer

IBM Qiskit Aer is a robust simulator for both ideal and noisy quantum circuit simulations. It leverages Python and the

ITensor C++ library to deliver high-performance quantum state manipulations. This makes it suitable for researchers

developing and testing quantum algorithms. Additionally, Qiskit Aer allows integration with quantum hardware through

Qiskit Terra, enabling seamless transition from simulation to real quantum computation. It also supports advanced features

like noise modeling and pulse-level control, making it versatile for studying quantum error correction and quantum device

performance.[42].

B. ProjectQ

ProjectQ is an open-source quantum programming framework that supports simulation and execution on quantum hardware.

It combines Python for user-level coding with C++ for backend performance, offering flexibility and efficiency in quantum

algorithm development. The framework includes tools for circuit optimization, automatic decomposition of high-level gates,

and compatibility with multiple quantum hardware platforms, making it a versatile tool for both academic and industrial

applications.[43]

C. Microsoft Quantum Simulator

Microsoft’s Quantum Simulator (MQS) is a part of the Quantum Development Kit, designed for large-scale quantum

circuits. It supports Q#, uses vectorized algorithms, and integrates GPU acceleration, making it ideal for scalable quantum

computations. MQS includes debugging tools like resource estimators and supports integration with Azure Quantum for

cloud-based quantum computing services, enhancing accessibility and scalability[44].

D. Quantum Toolbox in Python

The Quantum Toolbox in Python (QuTiP) is widely used for simulating quantum dynamics and information processing. It

employs numerical methods, including matrix exponentiation, for efficient quantum simulations, supporting advanced

research in quantum systems. QuTiP also provides modules for solving Lindblad master equations, quantum optics

simulations, and visualization of quantum states, making it a comprehensive tool for exploring quantum phenomena.[45]

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 59
Paper Publications

E. PyQuil Forest

PyQuil, part of Rigetti’s Forest platform, allows quantum programming and simulation using the Quil language. It is

designed for seamless integration with Rigetti’s quantum hardware, offering a comprehensive workflow for developing and

testing quantum algorithms. PyQuil supports hybrid quantum-classical computation and provides tools for quantum circuit

optimization, enabling users to efficiently simulate and experiment with complex quantum systems [46].

F. QSim

QSim by Google is a high-performance quantum circuit simulator optimized for classical systems. It leverages TensorFlow

for scaling and multi-core GPU/CPU optimization, enabling fast and efficient simulations of quantum states. QSim’s

architecture is designed for extensibility, allowing researchers to customize simulation parameters and integrate with other

quantum software tools for enhanced functionality.[47]

G. Quantum Development Kit QDK

Microsoft’s Quantum Development Kit includes a simulator for testing quantum algorithms written in Q#. It provides robust

support for developing quantum applications, using .NET libraries for optimization and scalability. The QDK also includes

libraries for quantum chemistry, machine learning, and numerical optimization, making it a versatile platform for exploring

diverse quantum applications [48]

H. Tket

Tket, developed by Cambridge Quantum, is a quantum software platform that provides simulators for running quantum

circuits. It uses classical optimization methods like gate decomposition to enhance quantum circuit execution. Tket also

supports multi-platform compatibility, enabling users to develop and test circuits on various quantum hardware backends

and simulators, ensuring broad applicability [49].

I. Quantum Computing Playground

Quantum Computing Playground is a browser-based interactive simulator. Developed by Google, it offers a beginner-

friendly environment for experimenting with quantum circuits without the need for additional setup. The platform includes

features like real-time visualization of quantum states, debugging tools, and an intuitive drag-and-drop interface, making it

accessible for users new to quantum computing [50].

J. Cirq Simulator

Cirq is an open-source quantum computing framework developed by Google, primarily designed for simulating and running

quantum circuits on quantum processors. It is particularly focused on providing tools for creating, simulating, and executing

quantum algorithms on near-term quantum hardware. The framework is tailored for optimizing quantum circuits and

supporting quantum hardware from various providers [51].

K. Qmod

Qmod specializes in modular quantum simulation, allowing researchers to simulate complex quantum networks and hybrid

systems. Its modular approach makes it flexible for modeling quantum interactions. Qmod also supports parameterized

quantum gates and customizable simulation environments, enabling researchers to tailor simulations to specific

experimental setups [52].

J. ClassiQ

Classiq is a quantum algorithm design platform, not a simulator. It automates the synthesis of quantum circuits, simplifying

the design of complex algorithms. Classiq is often used alongside simulators like Qmod to validate and test generated

circuits. The platform also provides an intuitive graphical interface and supports integration with major quantum hardware

providers, enhancing its usability for quantum algorithm development [53].

Quantum simulators work based on principles that aim to mimic the behavior of quantum systems, enabling researchers to

create circuits using quantum gates, study quantum algorithms and phenomena without directly using a quantum computer.

These simulators leverage classical computing resources to approximate the outcomes of quantum operations, such as

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 60
Paper Publications

superposition and entanglement, which are fundamental to quantum mechanics. Common approaches include state-vector

simulations, density matrix methods, and hybrid simulations that combine classical and quantum computing techniques.

They are essential tools for testing and optimizing quantum algorithms before running them on actual quantum hardware,

which is still limited in terms of scalability and coherence. Fig. 1 [54] illustrates the overall workflow involved in the

operation of quantum simulators.

Fig.1. Abstract work flow of a single experiment session.

The client-side interface, built with HTML, CSS, and JavaScript, is designed to assist users and prevent logical errors.

Redundant qubits and empty columns are automatically removed to simplify circuits and enhance clarity. Errors arising

from quantum theory contradictions, such as applying Hadamard gates to collapsed qubits, are detected and promptly

reported with explanatory messages. Critical operations are blocked until the issues are resolved [54]. The performance of

each simulator varies individually, but the underlying principles remain consistent. As mentioned earlier, the objective is to

facilitate the active development of quantum technologies and algorithms while quantum hardware continues to evolve. An

experiment in quantum computing involves designing and testing a quantum circuit and gates to solve a specific problem.

The process begins with defining the quantum circuit, which consists of qubits and gate operations. Then, a suitable quantum

algorithm is selected based on the problem at hand, such as quantum optimization or machine learning tasks. After

implementing the circuit, tests are conducted to evaluate its accuracy and performance. The results are compared with

classical methods to assess the potential advantages or limitations of the quantum solution.

V. CONCLUSION

The integration of classical and quantum computing is set to transform industries by addressing challenges beyond the reach

of traditional systems. Classical computing will continue to excel in managing tasks requiring precision, large-scale data

handling, and system control. Meanwhile, quantum computing offers groundbreaking capabilities in optimization,

cryptography, molecular simulation, and material science. Hybrid computing frameworks, where classical and quantum

systems collaborate, are emerging as a powerful paradigm. Classical computing can handle data preprocessing and system

orchestration, while quantum systems tackle computationally intensive algorithms, such as those used in optimization or

cryptographic analysis. This synergy is particularly promising for accelerating artificial intelligence tasks, such as feature

https://www.paperpublications.org/
https://www.paperpublications.org/

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 61
Paper Publications

selection and pattern recognition.Future advancements will hinge on solving key challenges, including quantum error

correction, improving qubit coherence, and scaling quantum hardware. Industry leaders such as IBM and Microsoft are

driving advancements in quantum computing with roadmaps focused on scaling systems and achieving fault tolerance. IBM

prioritizes scalability for complex computations, while Microsoft emphasizes fault-tolerant systems to enhance reliability

[55], [56]. Additionally, companies like Rigetti and D-Wave are advancing hybrid solutions for applications in logistics,

scheduling, and drug discovery [57], [58]. Government initiatives also play a vital role. For instance, the U.S. National

Quantum Coordination Office emphasizes the strategic importance of quantum networks for secure communications and

innovation [59]. Enterprises like Accenture are preparing businesses for the integration of quantum computing into their

operations, highlighting its transformative potential [60]. The EU’s Digital Decade strategy aims to have its first

supercomputer with quantum acceleration by 2025, positioning Europe as a global leader in quantum capabilities by 2030.

The European Chips Act supports the cost-effective, high-volume production of quantum chips in the EU for innovative

quantum devices. EU Member States have committed to developing a world-class quantum technology ecosystem,

recognizing its strategic importance for scientific and industrial competitiveness, with the goal of making Europe the global

leader in quantum excellence and innovation [61], [62]. Countries such as South Korea, India, Japan and Russia are also

advancing quantum computing with national strategies and ambitious goals.South Korea's Ministry of Science and ICT has

set plans to develop fault-tolerant quantum systems and train a skilled quantum workforce by 2030 [63] . India launched

the National Quantum Mission (NQM) to develop indigenous quantum technologies, including secure quantum

communication networks and scalable quantum processors [64]. Japan's Moonshot Research and Development Program

prioritizes quantum technology to address societal challenges, including secure communications and advanced simulations

[65]. According to Moscow State University, Russia plans to advance its capabilities in quantum technologies through

projects focused on developing quantum computing systems, quantum communication networks, and quantum sensors,

aiming to strengthen industrial applications and scientific research [66]. According to QURECA, quantum initiatives

worldwide, including efforts in many other countries, are driving innovation and collaboration to advance quantum

technologies across various sectors [67].These global initiatives highlight the shared recognition of quantum computing's

transformative potential and underscore the need for international collaboration and competitive innovation. The future of

computing lies in the complementarity and coexistence of classical and quantum technologies, fostering innovations across

multiple sectors.

REFERENCES

[1] А.Church, "The Calculi of Lambda-Conversion," Annals of Mathematics Studies, vol. 6, Princeton University Press,

1941. [Online]. Available: https://compcalc.github.io/public/church/church_calculi_1941.pdf [Accessed: Jan. 18,

2025].

[2] A. M. Turing, "Computing Machinery and Intelligence," Mind, vol. 59, no. 236, pp. 433-460, 1950. [Online].

Available: https://www.csee.umbc.edu/courses/471/papers/turing.pdf.

[3] A.Sabic “Einstein-Podolsky-Rosen Steering and Nonlocality in Open Quantum Systems”. Journal of Modern Physics,

15, 462-473. doi: 10.4236/jmp.2024.154021., 2024

[4] N. Stern, "Computers: From ENIAC to UNIVAC," IEEE Spectrum, vol. 18, no. 12, pp. 61–69, 1981.

[5] D. Deutsch, "Quantum theory, the Church-Turing principle, and the universal quantum computer," Proc. Roy. Soc.

London A: Mathematical, Physical and Engineering Sciences, vol. 400, no. 1818, pp. 97–117, 1985. https://doi.org/

10.1098/rspa.1985.0070

[6] J. Preskill, "Quantum computing 40 years later," arXiv preprint, 2021. [Online]. Available: https://arxiv.org/abs/

2106.10522

[7] E.A. Buchholz, “The IBM 701 System Design”, IBM, Oct. 1953. [Online]. Available: https://bitsavers.org/pdf/

ibm/701/Buchholz_IBM_701_System_Design_Oct53.pdf

[8] D. M. Ritchie, "The development of the C programming language," AT&T Bell Laboratories Technical Journal, vol.

63, no. 6, pp. 1689–1704, 1972. [Online]. Available: https://www.bell-labs.com/usr/dmr/www/chist.pdf

[9] B. Stroustrup, "An overview of the C++ programming language," in The Handbook of Object Technology, S. Zamir,

Ed. Boca Raton, FL: CRC Press LLC, 1999, pp. 1–18. [Online]. Available: https://www.stroustrup.com/crc.pdf

https://www.paperpublications.org/
https://www.paperpublications.org/
https://www.bell-labs.com/usr/dmr/www/chist.pdf
https://www.stroustrup.com/crc.pdf

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 62
Paper Publications

[10] D. Deutsch and R. Jozsa, "Rapid solution of problems by quantum computation," Proc. Roy. Soc. London A:

Mathematical, Physical and Engineering Sciences, vol. 439, no. 1907, pp. 553–558, 1992.

[11] P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proc. 35th Annu. Symp.

Foundations of Computer Science, pp. 124–134, 1994. [Online] Available: https://cc.ee.ntu.edu.tw/~rbwu/rapid_

content/course/QC/Shor1994.pdf

[12] L. K. Grover, "A fast quantum mechanical algorithm for database search," in Proc. 28th Annu. ACM Symp. Theory

of Computing, pp. 212–219, 1996.

[13] R. Jozsa, "Classical simulation and complexity of quantum computations: (Invited Talk)," in Computer Science–

Theory and Applications: 5th International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, Jun.

16–20, 2010, pp. 252–258. Springer Berlin Heidelberg

[14] J. Preskill, "Quantum Computing in the NISQ era and beyond," Quantum, vol. 2, pp. 79–94, 2018. DOI: 10.22331/q-

2018-08-06-79

[15] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press,

2004. [Online] Available: https://michaelnielsen.org/qcqi/

[16] D. P. DiVincenzo, "The physical implementation of quantum computation," Fortschritte der Physik, vol. 48, no. 9-11,

pp. 771–783, 2000.

[17] A. Aspuru-Guzik and P. Walther, "Photonic quantum simulators," Nature Physics, vol. 8, no. 4, pp. 285–291, 2012.

[18] A. W. Cross, L. S. Bishop, J. A. Smolin, and S. Choi, "OpenFermion: A Python library for quantum computing with

quantum chemistry applications," Quantum Science and Technology, vol. 3, no. 3, p. 035003, 2017.

[19] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete, "Full-stack, real-system

quantum computer studies: architectural comparisons and design insights," in Proceedings of the 46th International

Symposium on Computer Architecture (ISCA '19), New York, NY, USA, 2019, pp. 527–540. [Online]. Available:

https://doi.org/10.1145/3307650.3322273 .

[20] R. Sweke et al., "Stochastic gradient descent for hybrid quantum-classical optimization," Quantum, vol. 4, p. 314,

2020.

[21] M. Suchara et al., "Hybrid quantum-classical computing architectures," in Proceedings of the 3rd International

Workshop on Post-Moore’s Era Supercomputing (PMES), Dallas, TX, USA, 2018

[22] G. Kalai, Y. Rinott, and T. Shoham, "Google's quantum supremacy claim: Data, documentation, and discussion,"

arXiv preprint, 2023. [Online]. Available: https://arxiv.org/abs/2210.12753

[23] I. M. Enholm, E. Papagiannidis, P. Mikalef, et al., "Artificial intelligence and business value: A literature review,"

Information Systems Frontiers, vol. 24, pp. 1709–1734, 2022. [Online]. Available: https://doi.org/10.1007/s10796-

021-10186-w.

[24] M. AbuGhanem and H. Eleuch, "NISQ computers: A path to quantum supremacy," arXiv preprint, 2023. [Online].

Available: https://arxiv.org/abs/2310.01431

[25] H.-L. Huang et al., "Near-term quantum computing techniques," arXiv preprint, 2022. [Online]. Available:

https://arxiv.org/abs/2211.08737

[26] S. Bravyi et al., "The future of quantum computing with superconducting qubits," arXiv preprint, 2022. [Online].

Available: https://arxiv.org/abs/2209.06841

[27] S. S. Gill et al., "Quantum computing: Vision and challenges," arXiv preprint, 2024. [Online]. Available:

https://arxiv.org/abs/2403.02240v4

[28] G. Li et al., "On the co-design of quantum software and hardware," in Proceedings of the 8th Annual ACM

International Conference on Nanoscale Computing and Communication (NANOCOM '21), New York, NY, USA,

2021, Article 15, pp. 1–7. [Online]. Available: https://doi.org/10.1145/3477206.347746.

https://www.paperpublications.org/
https://www.paperpublications.org/
https://cc.ee.ntu.edu.tw/~rbwu/rapid_%20content/course/QC/Shor1994.pdf
https://cc.ee.ntu.edu.tw/~rbwu/rapid_%20content/course/QC/Shor1994.pdf
https://michaelnielsen.org/qcqi/
https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1007/s10796-021-10186-w
https://doi.org/10.1007/s10796-021-10186-w
https://arxiv.org/abs/2310.01431
https://arxiv.org/abs/2211.08737
https://arxiv.org/abs/2209.06841
https://arxiv.org/abs/2403.02240v4
https://doi.org/10.1145/3477206.347746

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 63
Paper Publications

[29] A. M. Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem," Proceedings of the

London Mathematical Society, vol. 42, no. 1, pp. 230–265, [Online] Available: https://www.cs.virginia.edu/

~robins/Turing_Paper_1936.pdf

[30] A. W. Cross et al., "Open Quantum Assembly Language," arXiv preprint arXiv:1707.03429, 2017. [Online].

Available: https://arxiv.org/abs/1707.03429

[31] G. Aleksandrowicz et al., "Qiskit: An Open-source Framework for Quantum Computing," Zenodo,Jan. 2019.available

https://doi.org/10.5281/zenodo.2562110

[32] Google Quantum AI, "Cirq: A Python Library for Writing, Manipulating, and Optimizing Quantum Circuits," 2023

Available: https://quantumai.google/cirq

[33] V. Bergholm et al., "PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations," Quantum,

vol. 5, p. 514, Nov. 2021. [Online]. Available: https://arxiv.org/abs/1811.04968

[34] T. Jones, A. Brown, I. Bush, et al., "QuEST and high-performance simulation of quantum computers," Scientific

Reports, vol. 9, p. 10736, 2019. [Online]. Available: https://doi.org/10.1038/s41598-019-47174-9

[35] C. Bauckhage, R. Bye, A. Iftikhar, C. Knopf, M. Mustafic, N. Piatkowski, R. Sifa, R. Stahl, and E. Sultanow, Quantum

Machine Learning: State of the Art and Future Directions. Federal Office for Information Security, 2021. [Online].

Available: https://www.bsi.bund.de.

[36] S. Diadamo, J. Nötzel, B. Zanger and M. Beşe, "QuNetSim: A Software Framework for Quantum Networks," in IEEE

Transactions on Quantum Engineering, vol. 2, pp. 1-12, 2021, Art no. 2502512, doi: 10.1109/TQE.2021.3092395

[37] M. Broughton et al., "TensorFlow Quantum: A software framework for quantum machine learning," arXiv preprint,

arXiv:2003.02989, 2021. [Online]. Available: https://doi.org/ 10.48550/ arXiv.2003. 02989.

[38] K. Young, M. Scese, and A. Ebnenasir, "Simulating Quantum Computations on Classical Machines: A Survey," arXiv

preprint, arXiv:2311.16505, 2023. [Online]. Available: https://arxiv.org/abs/2311.16505.

[39] A. Church, "An Unsolvable Problem of Elementary Number Theory," American Journal of Mathematics, vol. 58, no.

2, pp. 345–363, 1936. https://doi.org/10.2307/2371045

[40] S. P. Jordan, Quantum Computation Beyond the Circuit Model, Ph.D. dissertation, Dept. of Physics, Massachusetts

Institute of Technology, Cambridge, MA, USA, 2008. [Online]. Available: https://doi.org/10.48550/arXiv.0809.2307.

[41] A. Fauzi, N. Nurhayati, and R. Rahim, "Bit Error Detection and Correction with Hamming Code Algorithm,"

International Journal of Scientific Research in Science, Engineering and Technology, vol. 3, no. 1, pp. ISSN 2394-

4099 (Online), 2017. Available: doi: https://doi.org/10.31227/osf.io/j3w5z

[42] A. Cross et al., "Open Quantum Assembly Language," 2017. [Online]. Available: https://qiskit.org

[43] D. Steiger, T. Häner, and M. Troyer, "ProjectQ: An Open Source Software Framework for Quantum Computing,"

Quantum, vol. 2, p. 49, 2018. [Online]. Available: https://projectq.ch

[44] K. M. Svore et al., "Q#: Enabling Scalable Quantum Computing and Development," Microsoft Research, 2018.

[Online]. Available: https://learn.microsoft.com/en-us/quantum/overview/

[45] J. Johansson et al., "QuTiP: An Open-Source Python Framework for the Dynamics of Open Quantum Systems,"

Computer Physics Communications, vol. 184, no. 4, pp. 1234-1240, 2013. [Online]. Available: https://qutip.org

[46] R. Smith et al., "PyQuil: Quantum Programming in Python," Rigetti Computing”, 2016. [Online]. Available:

https://rigetti.com/forest

[47] Y. Chen et al., "QSim: Google’s Quantum Circuit Simulator," 2019. [Online]. Available: https://github.com/

quantumlib/qsim

[48] Microsoft,"Microsoft Quantum Development Kit Documentation,2020. [Online]. Available: https://learn.microsoft.

com/en-us/quantum/

https://www.paperpublications.org/
https://www.paperpublications.org/
https://www.cs.virginia.edu/%20~robins/Turing_Paper_1936.pdf
https://www.cs.virginia.edu/%20~robins/Turing_Paper_1936.pdf
https://arxiv.org/abs/1707.03429
https://doi.org/10.5281/zenodo.2562110
https://quantumai.google/cirq
https://arxiv.org/abs/1811.04968
https://doi.org/10.1038/s41598-019-47174-9
https://www.bsi.bund.de/
https://doi.org/%2010.48550/%20arXiv.2003.%2002989
https://arxiv.org/abs/2311.16505
https://doi.org/10.2307/2371045
https://doi.org/10.48550/arXiv.0809.2307
https://doi.org/10.31227/osf.io/j3w5z
https://qiskit.org/
https://projectq.ch/
https://learn.microsoft.com/en-us/quantum/overview/
https://qutip.org/
https://rigetti.com/forest
https://github.com/%20quantumlib/qsim
https://github.com/%20quantumlib/qsim

 ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 11, Issue 2, pp: (53-64), Month: October 2024 – March 2025, Available at: www.paperpublications.org

 Page | 64
Paper Publications

[49] Cambridge Quantum Computing, "Tket: Quantum Software Development Kit," 2021. [Online]. Available:

https://cambridgequantum.com/tket

[50] Google, "Quantum Computing Playground," 2015. [Online]. Available: https://quantum-computing-playground.

appspot.com/

[51] Quantum Computing Playground, "Cirq: A Python Framework for Quantum Circuits," GitHub repository, available

at: https://github.com/quantumlib/Cirq. [Accessed: Jan. 17, 2025].

[52] Qmod Team, "Qmod: Modular Quantum Simulator," 2023. [Online]. Available: https://qmod.org/

[53] Classiq, "Classiq Quantum Algorithm Design Platform," 2022. [Online]. Available: https://classiq.io

[54] A. Kydros, K. Prousalis, and N. Konofaos, "QuaCiDe: A General Purpose Quantum Circuit Design and Simulation

Interface," in Proceedings of ReAQCT '24: Recent Advances in Quantum Computing and Technology, Budapest,

Hungary, Jun. 2024. DOI: 10.1145/3665870.3665874, [Online] Аvailable: QuaCiDe: A General Purpose Quantum

Circuit Design and Simulation Interface

[55] IBM Quantum, "The Future of Quantum Computing," IBM Quantum Report, 2021. [Online]. Available:

https://quantum-computing.ibm.com

[56] Microsoft Quantum, "The Case for Quantum Computing," Microsoft Report, 2020. [Online]. Available: https://azure.

microsoft.com/en-us/resources/the-case-for-quantum-computing

[57] Rigetti Computing, "The Future of Quantum Programming: Tools and Frameworks," Rigetti Technical Report, 2022.

[Online]. Available: https://www.rigetti.com

[58] D-Wave Systems, "Hybrid Quantum Computing for Real-World Applications," D-Wave White Paper, 2021.

[Online]. Available: https://www.dwavesys.com

[59] National Quantum Coordination Office, "A Strategic Vision for America’s Quantum Networks," U.S. Government

Report, 2020. [Online]. Available: https://www.quantum.gov

[60] Accenture, "Quantum Computing is Coming: How to Prepare Your Business," Accenture Technology Vision Report,

2023. [Online]. Available: https://www.accenture.com

[61] European Commission Initiative: Shaping Europe’ s Digital Future 2025-2030, [Online] , Available: https://digital-

strategy.ec.europa.eu/en/policies/quantum [Accessed: Jan. 18, 2025].

[62] European Commision: The European Quantum Communication Infrastructure (EuroQCI) Initiative, [Online],

Available : https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci

[Accessed: Jan. 18, 2025].

[63] Ministry of Science and ICT, "Plans to Develop Quantum Technologies by 2030," Ministry of Science and ICT,

[Online]. Available: https://www.msit.go.kr/eng/bbs/view.do?bbsSeqNo=42&mId=4&mPid=2&nttSeq No=689

&pageIndex=&sCode=eng [Accessed: Jan. 20, 2025].

[64] Department of Science and Technology, "National Quantum Mission (NQM)," Department of Science and

Technology, [Online]. Available: https://dst.gov.in/national-quantum-mission-nqm. [Accessed: Jan. 20, 2025].

[65] Japan Moonshot R&D Program, "Goal 6: Quantum Technology," Japan Science and Technology Agency, [Online].

Available: https://www.jst.go.jp/moonshot/en/program/goal6/index.html. [Accessed: Jan. 20, 2025].

[66] Moscow State University, "Quantum Technologies and Projects," Moscow State University, [Online]. Available:

https://quantum.msu.ru/en/technologies/projects. [Accessed: Jan. 20, 2025].

[67] QURECA, "Quantum initiatives worldwide," QURECA, [Online]. Available: https://www.qureca.com/quantum-

initiatives-worldwide/ . [Accessed: Jan. 20, 2025].

https://www.paperpublications.org/
https://www.paperpublications.org/
https://cambridgequantum.com/tket
https://qmod.org/
https://classiq.io/
https://dl.acm.org/doi/fullHtml/10.1145/3665870.3665874
https://dl.acm.org/doi/fullHtml/10.1145/3665870.3665874
https://quantum-computing.ibm.com/
https://www.rigetti.com/
https://www.dwavesys.com/
https://www.quantum.gov/
https://www.accenture.com/
https://digital-strategy.ec.europa.eu/en/policies/quantum
https://digital-strategy.ec.europa.eu/en/policies/quantum
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://www.msit.go.kr/eng/bbs/view.do?bbsSeqNo=42&mId=4&mPid=2&nttSeq%20No=689%20&pageIndex=&sCode=eng
https://www.msit.go.kr/eng/bbs/view.do?bbsSeqNo=42&mId=4&mPid=2&nttSeq%20No=689%20&pageIndex=&sCode=eng
https://dst.gov.in/national-quantum-mission-nqm
https://www.jst.go.jp/moonshot/en/program/goal6/index.html
https://quantum.msu.ru/en/technologies/projects

